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About Me

▶ Currently MSc Logic @ ILLC, University of Amsterdam
▶ Interested in mathematical logic and theoretical CS

▶ Participant in GSoC ’23 @ SoSy Lab, LMU Munich
▶ Summer program for contributing to open-source software
▶ Supervised by Nian-Ze Lee
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Key Points

▶ Improved support for any backward analysis in
CPAchecker

▶ Implemented backward BMC algorithm in CPAchecker
▶ Handling pointer aliasing improves performance
▶ Backward BMC can complement regular BMC

▶ Empirical evidence for proof that backward BMC and
(plain) k-induction are equivalent [2]

▶ Want to identify limiting factors of backward BMC
performance
▶ Backward formula construction and SMT solving
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Backward Bounded Model Checking
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Backward Analysis

▶ We study the error location reachability problem
▶ Forward analysis unrolls a program starting from the main

entry to the error locations
▶ Backward analysis unrolls a program starting from the

error locations to the main entry
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Backward Bounded Model Checking

▶ Based on paper Backward Symbolic Execution with Loop
Folding, M. Chalupa and J. Strejček [2]

▶ They claim that BBMC is equivalent to k-induction by
showing:
▶ For a CFA A, let P be the set of all satisfiable paths from

the error location. Then both algorithms, when executed
on CFA A,

- return FALSE if P contains a path to the entry location;
- return TRUE if P is finite and contains no path to the

entry location;
- do not terminate if P is infinite and contains no path to

the entry location.
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Example: k-Induction

l0start

l1

l2

l3

l4

lE

l5

x=0; i=0

[i<n]

x=x+1;

i=i+1;

[!(x==i)]

[!(i<n)]

[x==i]

(l0, −1)

(l1, −1)

(l2, −1)

(l3, −1)

(l4, 0)

(lE, 0)

Base Case

(l4, 0)

(l1, 0)

(l2, 0)

(l3, 0)

(l4, 1)

(lE, 1)

Step Case
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Example: BBMC

l0start

l1

l2

l3

l4

lE

l5

x=0; i=0

[i<n]

x=x+1;

i=i+1;

[!(x==i)]

[!(i<n)]

[x==i]

(lE, ⊤)

(l4, x ̸= i)

(l3, x ̸= i + 1)

(l2, x + 1 ̸= i + 1)

(l1, i < n ∧ x + 1 ̸= i + 1)

(l4, ⊥)

(l0, ⊥)
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Backward Analysis in CPAchecker
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Backward Analysis in CPAchecker

▶ Some support for backward analysis exists:
▶ Backward PredicateCPA (partial support)

▶ Backward formula construction
▶ Backward CallstackCPA
▶ Backward LocationCPA

▶ Missing support for backward analysis:
▶ Exporting witness from backward analysis
▶ Backward LoopBoundCPA
▶ Handling of pointer aliasing by PredicateCPA
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Contributions to CPAchecker

▶ Implemented support for backward analysis for
WitnessExporter
▶ MR1

▶ Implemented support for LoopBoundCPA and the BBMC
algorithm in the BackwardBMCAlgorithm class
▶ MR2

▶ Implemented support for handling pointer aliasing for
backward analysis (WIP)
▶ MR3
▶ Some language features are not yet supported:

▶ union
▶ Pointers to struct
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Experimental Setup

▶ On revision 44369 of CPAchecker
▶ Branch backward-bmc-algorithm

▶ Algorithms:
▶ BBMC (pointer aliasing disabled)
▶ BBMC+PA (pointer aliasing enabled)
▶ BMC
▶ Plain k-induction

▶ 5652 ReachSafety programs of SV-COMP ’23 [1]
▶ Removed programs with unsupported features for

backward pointer aliasing
- ProductLines
- LinuxDrivers
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Results

Algorithm BBMC BBMC+PA
Correct True 727 959
Correct False 1152 1113
Incorrect True 10 47
Incorrect False 383 7

Table: Results of BBMC on 5652 ReachSafety programs

▶ Adding support for backward pointer aliasing solves most
false alarms and improves performance by 11%

▶ However, we get more false proofs
▶ These programs have unsupported language features
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Quantile Plot: All Tasks
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Quantile Plot: ECA Tasks
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BBMC on ECA Solver Comparison

0 100 200 300 400 500 600
1

10

100

1,000

n-th fastest correct proofs

C
P
U

ti
m
e
(s
)

MathSAT5 Z3

CVC5 BOOLECTOR

Bas Laarakker Google Summer of Code ’23 16 / 20



Observations

▶ BBMC complements BMC on certain program sets
▶ BBMC and k-induction achieve their results at the same

loop unrolling bound
▶ Their results differ only when one algorithm times out

before reaching the “required” bound to solve the program
▶ Suggests that BBMC and k-induction are equivalent on

ReachSafety-ECA
▶ On certain programs, BBMC takes a lot of time compared

to k-induction
▶ Likely due to SMT solving phase
▶ Solvers make a difference
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Conclusion

▶ Implemented BBMC and further support for backward
analysis

▶ BBMC performs quite well, especially on certain subsets
▶ BBMC and k-induction seem to be equivalent, at least on

ReachSafety-ECA
▶ BBMC can benefit from faster performance

▶ Future work:
▶ Identify bottlenecks of BBMC performance (backward

formula construction?)
▶ Evaluate BBMC vs k-induction further
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Technical Challenges
▶ JavaScript error when generating report

▶ TypeError: simplifiedGraphMap is undefined
▶ Improve support for backward pointer aliasing

▶ union
▶ Pointers to struct

1 struct Point { int x; };

2 // Expec ted r e s u l t : FALSE
3 int test1() {

4 struct Point p;

5 struct Point *pt = &p;

6 pt−>x = 2;

7 p.x = pt−>x − 1;

8 if (p.x == 1) {

9 reach_error();

10 return −1;

11 }

12 return 0;

13 }

1 union Data { int a; int b; };

2 // Expec ted r e s u l t : FALSE
3 int test2() {

4 union Data d;

5 d.a = 6;

6 d.b = d.a + 1;

7 if (d.b == 7) {

8 reach_error();

9 return −1;

10 }

11 return 0;

12 }
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