
Backward Bounded Model Checking in
CPAchecker

Bas Laarakker

Google Summer of Code ’23

2023-09-11 @ CPAchecker Workshop

About Me

▶ Currently MSc Logic @ ILLC, University of Amsterdam
▶ Interested in mathematical logic and theoretical CS

▶ Participant in GSoC ’23 @ SoSy Lab, LMU Munich
▶ Summer program for contributing to open-source software
▶ Supervised by Nian-Ze Lee

Bas Laarakker Google Summer of Code ’23 2 / 20

Key Points

▶ Improved support for any backward analysis in
CPAchecker

▶ Implemented backward BMC algorithm in CPAchecker
▶ Handling pointer aliasing improves performance
▶ Backward BMC can complement regular BMC

▶ Empirical evidence for proof that backward BMC and
(plain) k-induction are equivalent [2]

▶ Want to identify limiting factors of backward BMC
performance
▶ Backward formula construction and SMT solving

Bas Laarakker Google Summer of Code ’23 3 / 20

Key Points

▶ Improved support for any backward analysis in
CPAchecker

▶ Implemented backward BMC algorithm in CPAchecker
▶ Handling pointer aliasing improves performance
▶ Backward BMC can complement regular BMC

▶ Empirical evidence for proof that backward BMC and
(plain) k-induction are equivalent [2]

▶ Want to identify limiting factors of backward BMC
performance
▶ Backward formula construction and SMT solving

Bas Laarakker Google Summer of Code ’23 3 / 20

Key Points

▶ Improved support for any backward analysis in
CPAchecker

▶ Implemented backward BMC algorithm in CPAchecker
▶ Handling pointer aliasing improves performance
▶ Backward BMC can complement regular BMC

▶ Empirical evidence for proof that backward BMC and
(plain) k-induction are equivalent [2]

▶ Want to identify limiting factors of backward BMC
performance
▶ Backward formula construction and SMT solving

Bas Laarakker Google Summer of Code ’23 3 / 20

Key Points

▶ Improved support for any backward analysis in
CPAchecker

▶ Implemented backward BMC algorithm in CPAchecker
▶ Handling pointer aliasing improves performance
▶ Backward BMC can complement regular BMC

▶ Empirical evidence for proof that backward BMC and
(plain) k-induction are equivalent [2]

▶ Want to identify limiting factors of backward BMC
performance
▶ Backward formula construction and SMT solving

Bas Laarakker Google Summer of Code ’23 3 / 20

Backward Bounded Model Checking

Bas Laarakker Google Summer of Code ’23 4 / 20

Backward Analysis

▶ We study the error location reachability problem
▶ Forward analysis unrolls a program starting from the main

entry to the error locations
▶ Backward analysis unrolls a program starting from the

error locations to the main entry

Bas Laarakker Google Summer of Code ’23 5 / 20

Backward Bounded Model Checking

▶ Based on paper Backward Symbolic Execution with Loop
Folding, M. Chalupa and J. Strejček [2]

▶ They claim that BBMC is equivalent to k-induction by
showing:
▶ For a CFA A, let P be the set of all satisfiable paths from

the error location. Then both algorithms, when executed
on CFA A,

- return FALSE if P contains a path to the entry location;
- return TRUE if P is finite and contains no path to the

entry location;
- do not terminate if P is infinite and contains no path to

the entry location.

Bas Laarakker Google Summer of Code ’23 6 / 20

Example: k-Induction

l0start

l1

l2

l3

l4

lE

l5

x=0; i=0

[i<n]

x=x+1;

i=i+1;

[!(x==i)]

[!(i<n)]

[x==i]

(l0, −1)

(l1, −1)

(l2, −1)

(l3, −1)

(l4, 0)

(lE, 0)

Base Case

(l4, 0)

(l1, 0)

(l2, 0)

(l3, 0)

(l4, 1)

(lE, 1)

Step Case

Bas Laarakker Google Summer of Code ’23 7 / 20

Example: BBMC

l0start

l1

l2

l3

l4

lE

l5

x=0; i=0

[i<n]

x=x+1;

i=i+1;

[!(x==i)]

[!(i<n)]

[x==i]

(lE, ⊤)

(l4, x ̸= i)

(l3, x ̸= i + 1)

(l2, x + 1 ̸= i + 1)

(l1, i < n ∧ x + 1 ̸= i + 1)

(l4, ⊥)

(l0, ⊥)

Bas Laarakker Google Summer of Code ’23 8 / 20

Backward Analysis in CPAchecker

Bas Laarakker Google Summer of Code ’23 9 / 20

Backward Analysis in CPAchecker

▶ Some support for backward analysis exists:
▶ Backward PredicateCPA (partial support)

▶ Backward formula construction
▶ Backward CallstackCPA
▶ Backward LocationCPA

▶ Missing support for backward analysis:
▶ Exporting witness from backward analysis
▶ Backward LoopBoundCPA
▶ Handling of pointer aliasing by PredicateCPA

Bas Laarakker Google Summer of Code ’23 10 / 20

Backward Analysis in CPAchecker

▶ Some support for backward analysis exists:
▶ Backward PredicateCPA (partial support)

▶ Backward formula construction
▶ Backward CallstackCPA
▶ Backward LocationCPA

▶ Missing support for backward analysis:
▶ Exporting witness from backward analysis
▶ Backward LoopBoundCPA
▶ Handling of pointer aliasing by PredicateCPA

Bas Laarakker Google Summer of Code ’23 10 / 20

Contributions to CPAchecker

▶ Implemented support for backward analysis for
WitnessExporter
▶ MR1

▶ Implemented support for LoopBoundCPA and the BBMC
algorithm in the BackwardBMCAlgorithm class
▶ MR2

▶ Implemented support for handling pointer aliasing for
backward analysis (WIP)
▶ MR3
▶ Some language features are not yet supported:

▶ union
▶ Pointers to struct

Bas Laarakker Google Summer of Code ’23 11 / 20

https://gitlab.com/sosy-lab/software/cpachecker/-/merge_requests/115
https://gitlab.com/sosy-lab/software/cpachecker/-/merge_requests/116
https://gitlab.com/sosy-lab/software/cpachecker/-/merge_requests/117

Contributions to CPAchecker

▶ Implemented support for backward analysis for
WitnessExporter
▶ MR1

▶ Implemented support for LoopBoundCPA and the BBMC
algorithm in the BackwardBMCAlgorithm class
▶ MR2

▶ Implemented support for handling pointer aliasing for
backward analysis (WIP)
▶ MR3
▶ Some language features are not yet supported:

▶ union
▶ Pointers to struct

Bas Laarakker Google Summer of Code ’23 11 / 20

https://gitlab.com/sosy-lab/software/cpachecker/-/merge_requests/115
https://gitlab.com/sosy-lab/software/cpachecker/-/merge_requests/116
https://gitlab.com/sosy-lab/software/cpachecker/-/merge_requests/117

Contributions to CPAchecker

▶ Implemented support for backward analysis for
WitnessExporter
▶ MR1

▶ Implemented support for LoopBoundCPA and the BBMC
algorithm in the BackwardBMCAlgorithm class
▶ MR2

▶ Implemented support for handling pointer aliasing for
backward analysis (WIP)
▶ MR3
▶ Some language features are not yet supported:

▶ union
▶ Pointers to struct

Bas Laarakker Google Summer of Code ’23 11 / 20

https://gitlab.com/sosy-lab/software/cpachecker/-/merge_requests/115
https://gitlab.com/sosy-lab/software/cpachecker/-/merge_requests/116
https://gitlab.com/sosy-lab/software/cpachecker/-/merge_requests/117

Experimental Setup

▶ On revision 44369 of CPAchecker
▶ Branch backward-bmc-algorithm

▶ Algorithms:
▶ BBMC (pointer aliasing disabled)
▶ BBMC+PA (pointer aliasing enabled)
▶ BMC
▶ Plain k-induction

▶ 5652 ReachSafety programs of SV-COMP ’23 [1]
▶ Removed programs with unsupported features for

backward pointer aliasing
- ProductLines
- LinuxDrivers

Bas Laarakker Google Summer of Code ’23 12 / 20

Results

Algorithm BBMC BBMC+PA
Correct True 727 959
Correct False 1152 1113
Incorrect True 10 47
Incorrect False 383 7

Table: Results of BBMC on 5652 ReachSafety programs

▶ Adding support for backward pointer aliasing solves most
false alarms and improves performance by 11%

▶ However, we get more false proofs
▶ These programs have unsupported language features

Bas Laarakker Google Summer of Code ’23 13 / 20

Quantile Plot: All Tasks

0 500 1,000 1,500 2,000 2,500
1

10

100

1,000

n-th fastest correct proofs

C
P
U

ti
m
e
(s
)

BBMC BBMC+PA

BMC KI-plain

Bas Laarakker Google Summer of Code ’23 14 / 20

Quantile Plot: ECA Tasks

0 100 200 300 400 500
1

10

100

1,000

n-th fastest correct proofs

C
P
U

ti
m
e
(s
)

BBMC BMC

KI-plain

Bas Laarakker Google Summer of Code ’23 15 / 20

BBMC on ECA Solver Comparison

0 100 200 300 400 500 600
1

10

100

1,000

n-th fastest correct proofs

C
P
U

ti
m
e
(s
)

MathSAT5 Z3

CVC5 BOOLECTOR

Bas Laarakker Google Summer of Code ’23 16 / 20

Observations

▶ BBMC complements BMC on certain program sets
▶ BBMC and k-induction achieve their results at the same

loop unrolling bound
▶ Their results differ only when one algorithm times out

before reaching the “required” bound to solve the program
▶ Suggests that BBMC and k-induction are equivalent on

ReachSafety-ECA
▶ On certain programs, BBMC takes a lot of time compared

to k-induction
▶ Likely due to SMT solving phase
▶ Solvers make a difference

Bas Laarakker Google Summer of Code ’23 17 / 20

Conclusion

▶ Implemented BBMC and further support for backward
analysis

▶ BBMC performs quite well, especially on certain subsets
▶ BBMC and k-induction seem to be equivalent, at least on

ReachSafety-ECA
▶ BBMC can benefit from faster performance

▶ Future work:
▶ Identify bottlenecks of BBMC performance (backward

formula construction?)
▶ Evaluate BBMC vs k-induction further

Bas Laarakker Google Summer of Code ’23 18 / 20

Technical Challenges
▶ JavaScript error when generating report

▶ TypeError: simplifiedGraphMap is undefined
▶ Improve support for backward pointer aliasing

▶ union
▶ Pointers to struct

1 struct Point { int x; };

2 // Expec ted r e s u l t : FALSE
3 int test1() {

4 struct Point p;

5 struct Point *pt = &p;

6 pt−>x = 2;

7 p.x = pt−>x − 1;

8 if (p.x == 1) {

9 reach_error();

10 return −1;

11 }

12 return 0;

13 }

1 union Data { int a; int b; };

2 // Expec ted r e s u l t : FALSE
3 int test2() {

4 union Data d;

5 d.a = 6;

6 d.b = d.a + 1;

7 if (d.b == 7) {

8 reach_error();

9 return −1;

10 }

11 return 0;

12 }

Bas Laarakker Google Summer of Code ’23 19 / 20

References I

Dirk Beyer.
Competition on software verification and witness validation: Sv-comp 2023.
In Sriram Sankaranarayanan and Natasha Sharygina, editors, Tools and
Algorithms for the Construction and Analysis of Systems, pages 495–522, Cham,
2023. Springer Nature Switzerland.

Marek Chalupa and Jan Strejček.
Backward symbolic execution with loop folding.
In Cezara Drăgoi, Suvam Mukherjee, and Kedar Namjoshi, editors, Static
Analysis, pages 49–76, Cham, 2021. Springer International Publishing.

Bas Laarakker Google Summer of Code ’23 20 / 20

	Appendix

