Backward Bounded Model Checking in
CPAchecker

Bas Laarakker

Google Summer of Code '23

2023-09-11 @ CPAchecker Workshop

CI A/ Software Systems

About Me

» Currently MSc Logic @ ILLC, University of Amsterdam
» Interested in mathematical logic and theoretical CS
» Participant in GSoC '23 @ SoSy Lab, LMU Munich

» Summer program for contributing to open-source software
» Supervised by Nian-Ze Lee

Bas Laarakker Google Summer of Code '23

Key Points

» Improved support for any backward analysis in
CPACHECKER

Bas Laarakker Google Summer of Code '23

20

Key Points

» Improved support for any backward analysis in
CPACHECKER
» Implemented backward BMC algorithm in CPACHECKER

» Handling pointer aliasing improves performance
» Backward BMC can complement regular BMC

Bas Laarakker Google Summer of Code '23

Key Points

» Improved support for any backward analysis in
CPACHECKER
» Implemented backward BMC algorithm in CPAcHECKER
» Handling pointer aliasing improves performance
» Backward BMC can complement regular BMC

» Empirical evidence for proof that backward BMC and
(plain) k-induction are equivalent [2]

Key Points

» Improved support for any backward analysis in
CPACHECKER
» Implemented backward BMC algorithm in CPAcHECKER
» Handling pointer aliasing improves performance
» Backward BMC can complement regular BMC
» Empirical evidence for proof that backward BMC and
(plain) k-induction are equivalent [2]
» Want to identify limiting factors of backward BMC
performance
» Backward formula construction and SMT solving

Backward Bounded Model Checking

Bas Laarakker Google Summer of Code '23 4 /20

Backward Analysis

» We study the error location reachability problem
» Forward analysis unrolls a program starting from the main
entry to the error locations
» Backward analysis unrolls a program starting from the
error locations to the main entry

o
N
=]

Bas Laarakker Google Summer of Code '23

Backward Bounded Model Checking

» Based on paper Backward Symbolic Execution with Loop
Folding, M. Chalupa and J. Strejcek [2]

» They claim that BBMC is equivalent to k-induction by
showing:
» For a CFA A, let P be the set of all satisfiable paths from
the error location. Then both algorithms, when executed
on CFA A,
- return FALSE if P contains a path to the entry location;
- return TRUE if P is finite and contains no path to the

entry location;
- do not terminate if P is infinite and contains no path to

the entry location.

Bas Laarakker Google Summer of Code '23

6

20

Example: k-Induction

Base Case

(lOv _1)
1
(lb _1)

Bas Laarakker Google Summer of Code

'23

Step Case

(147 0)
1
(lla 0)
1
(l27 O)
1
(l37 O)
1
(l4v 1)
!
(lEa 1)

20

Example: BBMC

(lEaT)

)
(l4,$7éi)
T
(Is,x #i+1)
T
T
T
(l4aJ-)

Bas Laarakker Google Summer of Code '23

20

Backward Analysis in CPACHECKER

Bas Laarakker Google Summer of Code '23 9 /20

Backward Analysis in CPACHECKER

» Some support for backward analysis exists:
» Backward PredicateCPA (partial support)
» Backward formula construction
» Backward CallstackCPA
» Backward LocationCPA

Bas Laarakker Google Summer of Code '23 10 / 20

Backward Analysis in CPACHECKER

» Some support for backward analysis exists:
» Backward PredicateCPA (partial support)
> Backward formula construction

» Backward CallstackCPA
» Backward LocationCPA

» Missing support for backward analysis:

» Exporting witness from backward analysis
» Backward LoopBoundCPA
» Handling of pointer aliasing by PredicateCPA

Bas Laarakker Google Summer of Code '23

10 / 2

Contributions to CPACHECKER

» Implemented support for backward analysis for
WitnessExporter

> MR1

Bas Laarakker Google Summer of Code '23 11 /20

https://gitlab.com/sosy-lab/software/cpachecker/-/merge_requests/115
https://gitlab.com/sosy-lab/software/cpachecker/-/merge_requests/116
https://gitlab.com/sosy-lab/software/cpachecker/-/merge_requests/117

Contributions to CPACHECKER

» Implemented support for backward analysis for
WitnessExporter
> MR1
» Implemented support for LoopBoundCPA and the BBMC
algorithm in the BackwardBMCAlgorithm class
> MR2

Bas Laarakker Google Summer of Code '23 11

20

https://gitlab.com/sosy-lab/software/cpachecker/-/merge_requests/115
https://gitlab.com/sosy-lab/software/cpachecker/-/merge_requests/116
https://gitlab.com/sosy-lab/software/cpachecker/-/merge_requests/117

Contributions to CPACHECKER

» Implemented support for backward analysis for
WitnessExporter

> MR1
» Implemented support for LoopBoundCPA and the BBMC
algorithm in the BackwardBMCAlgorithm class
» MR2
» Implemented support for handling pointer aliasing for
backward analysis (WIP)

» MR3
» Some language features are not yet supported:

> union
> Pointers to struct

Bas Laarakker Google Summer of Code '23

https://gitlab.com/sosy-lab/software/cpachecker/-/merge_requests/115
https://gitlab.com/sosy-lab/software/cpachecker/-/merge_requests/116
https://gitlab.com/sosy-lab/software/cpachecker/-/merge_requests/117

Experimental Setup

» On revision 44369 of CPACHECKER
» Branch backward-bmc-algorithm
» Algorithms:
» BBMC (pointer aliasing disabled)
» BBMC+PA (pointer aliasing enabled)
» BMC
» Plain k-induction
» 5652 ReachSafety programs of SV-COMP '23 [1]

» Removed programs with unsupported features for
backward pointer aliasing

- ProductLines
- LinuxDrivers

Bas Laarakker Google Summer of Code '23

Algorithm BBMC BBMC+PA
Correct True 727 959
Correct False 1152 1113
Incorrect True 10 47
Incorrect False 383 7

Results of BBMC on 5652 ReachSafety programs

Adding support for backward pointer aliasing solves most
false alarms and improves performance by 11%

However, we get more false proofs
These programs have unsupported language features

Quantile Plot: All Tasks

1,000

100

CPU time (s)

—_
S

—@— BBMC —@— BBMC+PA
—@®— BMC —%— KlI-plain

| | | | |
0 500 1,000 1,500 2,000 2,500
n-th fastest correct proofs

Bas Laarakker Google Summer of Code '23 14 /20

Quantile Plot: ECA Tasks

1,000

100

CPU time (s)

—
e}

—@— BBMC —@— BMC
—@— KlI-plain

| | | | |
0 100 200 300 400 500
n-th fastest correct proofs

Bas Laarakker Google Summer of Code '23 15 /20

BBMC on ECA Solver Comparison

1,000

100

CPU time (s)

—
=}

—@— MathSAT5 —jg— Z3
—®— CVC5 —%— BOOLECTOR

1 | | | | | |
0 100 200 300 400 500 600

n-th fastest correct proofs

Bas Laarakker Google Summer of Code '23 16 / 20

Observations

v

BBMC complements BMC on certain program sets
BBMC and k-induction achieve their results at the same
loop unrolling bound
Their results differ only when one algorithm times out
before reaching the “required” bound to solve the program
» Suggests that BBMC and k-induction are equivalent on
ReachSafety-ECA
On certain programs, BBMC takes a lot of time compared
to k-induction
> Likely due to SMT solving phase
> Solvers make a difference

Conclusion

» Implemented BBMC and further support for backward
analysis
» BBMC performs quite well, especially on certain subsets
» BBMC and k-induction seem to be equivalent, at least on
ReachSafety-ECA
» BBMC can benefit from faster performance
» Future work:

> Identify bottlenecks of BBMC performance (backward
formula construction?)
» Evaluate BBMC vs k-induction further

Technical Challenges

» JavaScript error when generating report

» TypeError:

simplifiedGraphMap is undefined

» Improve support for backward pointer aliasing

> union
» Pointers to struct

1 struct Point { int x; };
2 // Expected result: FALSE
3 int testl() {

4 struct Point p;

5 struct Point *pt = &p;
6 pt->x = 2;

7 p.x = pt->x - 1;

8 if (p.x == 1) {

9 reach_error();

10 return -1;

11 }

12 return 0O;

Bas Laarakker

1
2
3
4
5
6
7
8
9

union Data { int a; int b; };
// Expected result: FALSE
int test2() {

union Data d;

d.a = 6;

d.b = d.a + 1;

if (d.b == 7) {
reach_error();
return -1;

}

return 0;

Google Summer of Code '23 19

References |

Dirk Beyer.

Competition on software verification and witness validation: Sv-comp 2023.

In Sriram Sankaranarayanan and Natasha Sharygina, editors, Tools and
Algorithms for the Construction and Analysis of Systems, pages 495-522, Cham,
2023. Springer Nature Switzerland.

Marek Chalupa and Jan Strejéek.
Backward symbolic execution with loop folding.
In Cezara Dragoi, Suvam Mukherjee, and Kedar Namjoshi, editors, Static
Analysis, pages 49-76, Cham, 2021. Springer International Publishing.

Bas Laarakker Google Summer of Code '23 20 / 20

	Appendix

