A Unifying Approach for
Control-Flow-Based Loop Abstraction

Dirk Beyer, Marian Lingsch-Rosenfeld, and Martin Spiess|

LMU Munich, Germany

Software Systems

LMU

Dirk Beyer, Marian Lingsch-Rosenfeld, Martin Spiess| LMU Munich, German 1/18

Loop Acceleration vs. Loop Abstraction

» Loop Acceleration:
describes techniques that calculate the precise effect of a loop

» Loop Abstraction:
describes techniques that overapproximate the semantics of a loop

» We can treat Loop Acceleration as a special case of Loop Abstraction
=In this talk we will refer to both as Loop Abstractions

Dirk Beyer, Marian Lingsch-Rosenfeld, Martin Spiessl LMU Munich, Germany 2

Introductory Example: Loop Acceleration

void main() {
int i = 0;
while (i<N) {
i=i+1;
b . .
assert (i==N); [i==N] [i'=N]

} @ RS

» Unrolling the loop for verification is often prohibitively expensive for large N

~NOoO O W N

» Simple cases like the one shown here can be accelerated

» Downside: Traces do not correspond to the original program any more

Dirk Beyer, Marian Lingsch-Rosenfeld, Martin Spiessl LMU Munich, Germany

Introductory Example: Loop Abstraction
v v

i:=0 [i<N] =0
void main() { Y_/@)
int i = 0; =it

while (i<N) { [i>=N] i := nondet()
i=i+l;

} . .

assert (i==N); [i==N] [i'=N] [I——N [i'=N]

} O ® O ©

> Instead of a precise acceleration, we can also apply an overapproximating
abstraction

» Here we just havoc all variables that are modified in the loop, but more
elaborate abstraction strategies exist

~No ok wWwN -

Dirk Beyer, Marian Lingsch-Rosenfeld, Martin Spiessl LMU Munich, Germany

Motivation

» many loop abstraction strategies exist:

> constant extrapolation

» havoc abstraction
> ..

» Usually these are applied as source code transformation
» No single tool exists that implements all of them and enables a comparison
» = We want to be able to:
» Compare them all inside a single framework
> Select during the state-space exploration which strategies work for the
verification problem at hand (using CEGAR)

> Map our verification results back to the original program
» Reuse loop abstractions by making them available via patches

Proposed Solution

> Use the CFA as interface
}

» Add our loop abstractions next to the
original loop
i:=0

li<N]
» Mark the entry nodes of each added enter<h>
alternative with an identifier for the i—it1
applied strategy: 0 : L — S i:=nondet() [>=N]

» In the example:

S={bh
Oy

o(ly="0bforl e {2,3,4,6,7, err,9}
» Select allowed strategies during
state-space exploration using o

Dirk Beyer, Marian Lingsch-Rosenfeld, Martin Spiessl MU Munich, Germany

Havoc Abstraction

void main() {

1
1 void main() { 2 int i = 0;
2 int i = 0; 3 if (i<N) {
3 while (i<N) { 4 i = nondet();
4 i=i+1; 5 assume (! (i<N));
5 } 6 }
6 assert (i==N); 7 assert (i==N);
7 3} 8 1}

» Havoc Abstraction: if loop is entered, havoc all input variables of the loop
and perform one loop iteration, then assume the loop is left

» Only sound if the loop body does not contain assertions
» Overapproximation, but sometimes enough (not in this example)

Dirk Beyer, Marian Lingsch-Rosenfeld, Martin Spiessl LMU Munich, Germany 7 /18

Naive Loop Abstraction

}
1 void main() {
2 int i = 0;] [i<N]
3 if (<) { i:=0
1 void main() { 4 i = nondet();
2 int i = 0; 5 assume (i<N) ; enter<n>
3 while (i<N) { 6 i=i+1; :N]
4 i=i+1; 7 assume (! (i<N)) ; \
5 } 8 }])
6 assert (i==N); 9 assert (i==N); li==N] [i'=N]
7} 10

} @

» Naive Loop Abstraction [4]:
havoc all input variables of the loop and perform one loop iteration

» Only sound if the loop body does not contain assertions
» Overapproximation, but sometimes enough (like in this example)

Dirk Beyer, Marian Lingsch-Rosenfeld, Martin Spiessl LMU Munich, Germany

Constant Extrapolation Strategy
v

i::(@ [i<N]

1 4 0 { enter<c>

void main ..

2 int i = 0; ﬁw
3 while (i<N) { i=i+N [i>=N]

4 i=i+1;

5 }

6 assert (i==N); [i==N] ["_N]

7

} | @

» Constant Extrapolation: For loops with a finite bound that only increments
variables by a constant, the end result can be easily computed

» This is a precise abstraction, i.e., an acceleration

Dirk Beyer, Marian Lingsch-Rosenfeld, Martin Spiessl LMU Munich, Germany

Choice of Allowed Successors

v

Imagine we are at node 3 in the CFA on the right

v

We have to decide which successors to generate

> Available strategies form the set A, e.g. here in
node 3: A= {b,n,h}

» Allowed strategies are tracked in the set 7g

» Allowed successors will be determined by the

function select, which needs to satisfy:
select(A,ms) C ANmg

» Function select can be induced by any strict
total or partial order C over S:
select(A,7g) =

{scAnmg| A’ € ANmg:sC s}

Dirk Beyer, Marian Lingsch-Rosenfeld, Martin Spiessl LMU Munich, Germany

Examples for Orders over Abstraction Strategies

havoc abstraction

naive abstraction const. extrapolation
base
» select({b,n,c},{b,n,c,h}) ={n,c} enter<n>
havoc abstraction
naive abstraction

const. extrapolation

base
> select({b,n,c}, {b.n,c,h}) = {n}

Dirk Beyer, Marian Lingsch-Rosenfeld, Martin Spiess| LMU Munich, Germany 11 /18

State-Space Exploration

» In the following examples, we will show abstract states as triples a = (I, e, 7s)
» [is the current location in the CFA
> e is the abstract state (depending on analysis)
> 7 is the strategy precision for selection

» Example: a = (3, ez, {b,n,c})

» In our transfer relation we will need to decide which strategies to apply based
the function select

Dirk Beyer, Marian Lingsch-Rosenfeld, Martin Spiessl LMU Munich, Germany

Loop Abstraction with CEGAR: Example 1

| |
®
. . . i<N] i:=0
» Once reaching location 3, we i:=0 [
1 , 37 9 b7
follow the naive loop \/@ I:el {:In}
. enter<n> ir=i+1
abstraction strategy enter<n>
e H :N
» The proof succeeds \ [i>=N]
» Otherwise (see next slide): N =]
== =
> Backtrack 6,05, b,
> Update precision @ I::||
> Here this means: analyze [it=N]

original program 7,e6,{b,n}

Dirk Beyer, Marian Lingsch-Rosenfeld, Martin Spiessl LMU Munich, Germany 13 / 18

Loop Abstraction with CEGAR: Example 2

! ! ! !
i__(? i<N] =0 =0 =0
EXR]
enter<n> Qw enter<n> [i>=N] [i<N]

[6.es, 17| [4en ()]

[[%2== 1/@)\[%2!_0]
(6.5, (03

B

AN
@ [i%21=0]
err, eg, {b,n}

irk Beyer, Marian Lingsch-Rosenfeld, Martin Spiess| LMU Munich, Germany 14 8

CEGAR: Feasibility of Counterexamples

» In general, CEGAR works as shown
on the right

» For our approach, we need to
rethink what it means if a
counterexample is feasible:

Even if the path formula is
satisfiable, the counterexample is
only feasible if there are no
over-approximating strategies used
along the path!

Dirk Beyer, Marian Lingsch-Rosenfeld, Martin Spiessl

feasible

Feasibility check

counterexample found

no counterexample

Initial precision mo

Program P Analyze P = 7 spurious

Property ¢r

refined precision 7

Abstraction refinement

LMU Munich, Germany 15 / 18

CEGAR: Refinement Chaining

» Question: How does this refinement interfere with the regular CEGAR
refinement of the analysis we use?

» Answer: This is completely transparent and does not affect the inner CEGAR
refinement

» The refinement operator modifies the reached set and waitlist:
refine : (reached,waitlist) — (reached’,waitlist’)
reached, waitlist C L x E x II

» =- We can chain our strategy precision refinement refineg with the
refinement refinew of the wrapped analysis:
refine = refinegs o refinew

Dirk Beyer, Marian Lingsch-Rosenfeld, Martin Spiessl LMU Munich, Germany

Accessibility of Loop Abstractions via Patches

» We provide loop abstractions as
patches

» We also output the abstracted
version of the program in case we
found a proof

» Can be used independently by other
tools

--- havoc.c
+++ havoc.c
-14,13 +14,16

+ 4+ +

+

return;

3

int main(void) {
unsigned int x = 1000000;

while (x > 0) {

X —-= 4;

// START HAVOCSTRATEGY

if (x> 0) {

x = __VERIFIER_nondet_uint();
}

if (x > 0) abort();

// END HAVOCSTRATEGY
__VERIFIER assert(!(x % 4));

Dirk Beyer, Marian Lingsch-Rosenfeld, Martin Spiess| LMU Munich, Germany

17

Novel CEGAR approach for applying loop abstractions
Independent of the underlying abstract domain

Easily extensible with new abstraction strategies

Loop abstractions are made available via patches

Implemented in the CPAcuECKER framework,
cf. supplementary webpage for how to use:
https://www.sosy-lab.org/research/loop-abstr: |l

https://www.sosy-lab.org/research/loop-abstraction/

References |

[1] Baudin, P., Cuoq, P., Filliatre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL: ANSI/ISO C
specification language version 1.15 (2020), http://frama-c.com/download/acsl.pdf

[2] Darke, P., Chimdyalwar, B., Venkatesh, R., Shrotri, U., Metta, R.: Over-approximating loops to prove
properties using bounded model checking. In: Proc. DATE. pp. 1407-1412. IEEE (2015).
https://doi.org/10.7873/DATE.2015.0245

[3] Darke, P., Khanzode, M., Nair, A., Shrotri, U., Venkatesh, R.: Precise analysis of large industry code. In:
Proc. APSEC. pp. 306-309. IEEE (2012). https://doi.org/10.1109/APSEC.2012.97

[4] Darke, P., Khanzode, M., Nair, A., Shrotri, U., Venkatesh, R.: Precise analysis of large industry code. In:
Leung, K.R.P.H., Muenchaisri, P. (eds.) 19th Asia-Pacific Software Engineering Conference, APSEC 2012,
Hong Kong, China, December 4-7, 2012. pp. 306-309. |IEEE (2012).
https://doi.org/10.1109/APSEC.2012.97, https://doi.org/10.1109/APSEC.2012.97

[5] Kumar, S., Sanyal, A., Venkatesh, R., Shah, P.: Property checking array programs using loop shrinking. In:
Beyer, D., Huisman, M. (eds.) Tools and Algorithms for the Construction and Analysis of Systems - 24th
International Conference, TACAS 2018, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part I. Lecture
Notes in Computer Science, vol. 10805, pp. 213-231. Springer (2018).
https://doi.org/10.1007 /978-3-319-89960-2_ 12, https://doi.org/10.1007/978-3-319-89960-2_12

Dirk Beyer, Marian Lingsch-Rosenfeld, Martin Spiess| LMU Munich, Germany 19 / 18

http://frama-c.com/download/acsl.pdf
https://doi.org/10.1109/APSEC.2012.97
https://doi.org/10.1007/978-3-319-89960-2_12

Evaluation

» Benchmark tasks: ReachSafety-Loops from SV-Benchmarks (765 tasks)
» Resource limits: CPU time 900s, 15 GB RAM, 2 processing units

» Considered analyses in CPACHECKER:
> Predicate Abstraction (PA)
» Value Analysis (VA)
» Bounded Model Checking (BMC)
> Used loop abstractions: havoc, naive abstraction[3], constant extrapolation,
output abstraction[2]

» Question: can we improve these analyses with our loop abstraction approach?

Results for Predicate Abstraction

1000 ¢ \]

I|—e— PA]

| | —=—PA-LA |

» Only slightly more tasks solved with - I)

loop abstraction g 100} g

» In many cases, predicate abstraction *; § 1

is already able to proof the program & i |

correct i |

» Overhead is small (as expected) 10l |
0

| | |
50 100 150 200

n-th fastest result

Dirk Beyer, Marian Lingsch-Rosenfeld, Martin Spiessl LMU Munich, Germany 21 /18

Results for Value Analysis

1000 ‘ ‘]
[|—e— VA 1
| |—=— VA-LA |
» Value analysis performs constant © i |
propagation g 100} e
» Less likely to proof program correct f) i i
on its own & I |
» = loop abstraction can help to find i)
proofs 10} .
F | | | |]
0

| |
20 40 60 80 100 120
n-th fastest result

Dirk Beyer, Marian Lingsch-Rosenfeld, Martin Spiessl LMU Munich, Germany 22 /18

Results for Bounded Model Checking

1000 ¢ \]

| —e— BMC i

|| —=—BMC-LA |

» BMC solves more tasks in general & 100 e
> effect of loop abstraction > i 1
comparable to results for value 3) i il
analysis i .

10 1

| |
200 300
n-th fastest result

|
100

[=F mman

Dirk Beyer, Marian Lingsch-Rosenfeld, Martin Spiess| LMU Munich, Germany

|
400

Some

v

of the Planned Additions

Use a location-based strategy precision instead of a global one

Add a k-induction strategy with the possibility to use externally provided
invariants (use cases: interactive verification, witness validation)

Extend the witness format to include information about the used acceleration
strategies

Add acceleration of loops with array accesses, e.g. via k-shrinkability [5]

Recursion: as starting point, a strategy to detect end-recursive procedure calls
and rewrite them into iterative form should be simple to implement
Witness Generation: map our reachability graph over the strategy-augmented
CFA back to a witness automaton over the original program’s CFA

Add support for (ACSL) function contracts

Outlook: Function Contracts

/*@ requires 0<=n<65536 && *res==0;
*Q assigns *res;

*Q ensures *res == nx(n+1)/2; */
void sum(int n, int *res) {

while (n>0) {*res+=n;n--;}
}
void main() {

int i = 0;

CO~NOO1T A~ WN

—_
o O

11 sum(1000,&i) ;
12
13 assert (i==500%1001) ;
14 3
» We can replace function calls

wO~NO Ok WwWwN -

—
[« 3\e]

11
12
13
14

/*@ requires 0<=n<65536 && *res==0;

A%

3

v

}

*Q assigns *res;

*Q@ ensures *res == nx(n+1)/2; */
0oid sum(int n, int *res) {
while (n>0) {*res+=n;n--;}

0id main() {
int i = 0;
havoc(i);

assert (i==500500) ;

in case a function contract (e.g. written in ACSL [1]) is provided

» The function contract can be verified separately

Dirk Beyer, Marian Lingsch-Rosenfeld, Martin Spiessl LMU Munich, Germany

	Appendix

