
Reducing Time and Efforts When
Verifying Large Software Systems with

Klever

Ilia Zakharov
Ivannikov Institute For System Programming of RAS

ilja.zakharov@ispras.ru

Klever Verification Framework

Intended for finding bugs in large software systems using existing
software verification tools
• C programs

• GNU C, Microsoft C
• x86, ARM
• > 200 KLOC

• Requirements supported by software verification tools used as backends
• Memory safety
• Data races
• API usage

• Deliver both results and a program-adapted tool
• Coverage reports, error traces and results of bugs triage
• A tool to check regressions or reproduce results

2

Workflow

3

• Implement program-specific
parts in the framework

• Prepare models and
specifications

Development

• Find bug
• Deliver the tool and results

Verification

Klever Verification Framework

4

Program Decomposition

Environment Modeling

Requirements Modelling

Verification

Results Assessment

Source
Code

Bugs
or

Proofs

Source Code Preparation

5

Goals

• Limit scope to specific components,
source code versions, architectures
• Prepare requirements
• Plan development stages
• Find bugs or prove correctness
• Deliver results or a tool

6

Prepare Build Base

7

ExecutablesSource Code Build System

Clade and CIF Build Base

Program Decomposition

8

Program Decomposition

• Reduce environment modelling efforts
• Prevent timeouts
• Get rid of unsupported code

9

Lib 1 Lib 2 Lib 3

Compone
nt 1 Component 2

Fragment I

Fragment II

Extract Components as Fragments

10

1. Determine logical components
• With unique interface
• With common interface

2. Separate libraries
3. Remove auxiliary or irrelevant parts
• Debug
• Tests

Manual or Automatic Decomposition

• Define fragments explicitly in
advance
• Develop algorithms to decompose

the program using its build base

11

Core.c

Driver2.c

lib1.c

lib.c

Driver1.c

Helper.c

43

10
2

3

Provide Environment
Models

12

Kinds of Models
Kind of a Model External Functions
Common Model Undefined functions that init/uninit resources and influence the

control flow
Requirement Model Specific API that should be properly used by the fragment
Environment Model Functions that call entry points and influence these calls

13

Program
Fragment

Environment
Model

Requirement
Model

Common
Model

Environment Model

14

Lib

Component

Program

Interraction Scenarios

15

Lib

Component

Program

1

1

2

2

3

4

4

5

Intermediate Environment Model

16

moxa_open (failed)

moxa_write

moxa_open (success)
moxa_close

tty_alloc_driver (success)

tty_alloc_driver (failed)

tty_set_operations
tty_register_driver (success)

tty_register_driver (failed)
put_tty_driver

tty_unregister_driver
Activate/deactivate

Environment Model Generator

C Code

Intermediate
Environment Model

Translator

Environment Model
Specifications Program Fragment

Scenario Model Builders

17

Environment Model Generator

18

Provide specifications
as templates Manually develop

environment model
specifications

Select auxiliary
function models

Adjust completeness
of the environment model C Code

Intermediate
Environment Model

Translator

Environment Model
Specifications Program Fragment

Scenario Model Builders

Provide Requirement
Specifications

19

Requirement Specification
int cnt = 0;

int try_module_get(struct module * m) {
ret = ldv_random_neg_int();
if (!ret)

cnt++;
return ret;

}

void module_put(struct module * m) {
cnt--;

}

void ldv_check_final_state(void) {
ldv_assert(cnt==0);

}
20

Requirement Specifications Development

1. Support an empty requirement to measure the coverage
2. Support memory safety and data race safety requirement

specifications
3. Implement other requirement specifications
4. Develop tests for requirement models

21

Analyse Results

22

Verification Results

• Error traces (witnesses)
• Coverage reports
• Logs
• Resource consumption statistics

23

Use cases

24

Development
• Uncovered entry points
• Complicated code
• Classify fails

Refinement
• Marks and tags for errors and false positives
• Regression tests

Verification
• Find bugs
• Prepare final marks and tags

Evaluation

25

Manual Effort at Verification of Linux Device Drivers and
Subsystems

Stage Serial device
drivers (20KLOC)

All device
drivers(4MLOC)

Subsystems
(1MLOC) Total

Development of
decomposition
algorithms

0,25 man-months

(100 LOC Python)

- 0,25 man-months

(100 LOC Python)

0,5 man-months

(200 LOC Python)

Development of
environment model
builders

3 man-months

(3 KLOC Python)

- 0,5 man-months

(500 LOC Python)

3,5 man-months

(3,5 KLOC Python)

Development of
environment model
specifications

4,5 man-months

(7 KLOC DSL)

5,5 man-months

(10 KLOC DSL)

- 10 man-months

(17 KLOC DSL)

Development of
requirement
specifications

6 man-months

(550 LOC DSL)

9 man-months

(950 LOC DSL)

0,25 man-months

(200 LOC DSL)

15,25 man-months

(1500 LOC DSL)

Total 13,75 man-
months

14,5 man-months 1 man-month 29,25 man-months

26

BusyBox Applets Verification

27

Stage Efforts
Development of
decomposition
algorithms

0,25 man-months
(100 LOC Python)

Development of
environment model
builders

0 man-months
-

Development of
environment model
specifications

0,25 man-months (200 LOC DSL)

Development of
requirement
specifications

0,5 man-months
(300 LOC DSL)

Total 1 man-month

Why do you care

• Another point of view
• Train your verification tool
• Get new verification tasks

28

Thank You!

29

https://github.com/ldv-klever/klever - Mirror
https://forge.ispras.ru/projects/klever - Issue tracker
https://github.com/17451k/cif - CIF
https://github.com/17451k/clade - Clade
http://linuxtesting.org/kernel - Other links and
verification projects

https://github.com/ldv-klever/klever
https://forge.ispras.ru/projects/klever
https://github.com/17451k/cif
https://github.com/17451k/clade
http://linuxtesting.org/kernel

Build Base

• Various information about the program
• Source code
• Build command graph
• File dependencies graph
• Callgraph
• …

• Easy to access
• Movable archive with all sources and data
• Python API to access the data

30

Summary

Decomposition Environment
Modeling

Requirement
Specifications
Development

Analyzing results

Development

Manually prepared
decomposition
specification

Coarse model
without restrictions

Empty requirement Code coverage

Decomposition
algorithms

Scenario model
builders

Requirement
specifications,
common model

Code coverage,
marks, tags

Refinement

Algorithms to verify
libraries

Environment model
specifications, tests

Requirement
specifications,
common model,
tests

Code coverage,
marks, tags

Verification - - Common model Code coverage,
marks, tags

31

Verification Time

Verification Job 2 physical cores 4 physical cores 30 * 4 physical cores

Serial device drivers (30KLOC) 5h 2.7h 0.5h
All device drivers (3MLOC) 600h 195h 11h

32

