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Klever Verification Framework

Intended for finding bugs in large software systems using existing 
software verification tools
• C programs

• GNU C, Microsoft C
• x86, ARM
• > 200 KLOC

• Requirements supported by software verification tools used as backends
• Memory safety
• Data races
• API usage

• Deliver both results and a program-adapted tool
• Coverage reports, error traces and results of bugs triage
• A tool to check regressions or reproduce results
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Workflow
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• Implement program-specific 
parts in the framework

• Prepare models and 
specifications

Development

• Find bug
• Deliver the tool and results

Verification



Klever Verification Framework

4

Program Decomposition

Environment Modeling

Requirements Modelling

Verification

Results Assessment
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Bugs 
or 
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Source Code Preparation
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Goals

• Limit scope to specific components, 
source code versions, architectures
• Prepare requirements
• Plan development stages
• Find bugs or prove correctness
• Deliver results or a tool
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Prepare Build Base

7

ExecutablesSource Code Build System

Clade and CIF Build Base



Program Decomposition
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Program Decomposition

• Reduce environment modelling efforts
• Prevent timeouts
• Get rid of unsupported code
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Lib 1 Lib 2 Lib 3

Compone
nt 1 Component 2

Fragment I

Fragment II



Extract Components as Fragments
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1. Determine logical components
• With unique interface
• With common interface

2. Separate libraries
3. Remove auxiliary or irrelevant parts
• Debug
• Tests



Manual or Automatic Decomposition

• Define fragments explicitly in 
advance
• Develop algorithms to decompose 

the program using its build base
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Core.c

Driver2.c

lib1.c

lib.c

Driver1.c

Helper.c
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Provide Environment 
Models

12



Kinds of Models
Kind of a Model External Functions
Common Model Undefined functions that init/uninit resources and influence the 

control flow
Requirement Model Specific API that should be properly used by the fragment
Environment Model Functions that call entry points and influence these calls
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Environment Model
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Lib

Component

Program



Interraction Scenarios

15

Lib
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Intermediate Environment Model
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moxa_open (failed)

moxa_write

moxa_open (success)
moxa_close

tty_alloc_driver (success)

tty_alloc_driver (failed)

tty_set_operations
tty_register_driver (success)

tty_register_driver (failed)
put_tty_driver

tty_unregister_driver
Activate/deactivate



Environment Model Generator

C Code

Intermediate 
Environment Model

Translator

Environment Model 
Specifications Program Fragment

Scenario Model Builders
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Environment Model Generator
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Provide specifications 
as templates Manually develop 

environment model 
specifications

Select auxiliary 
function models

Adjust completeness 
of the environment model C Code

Intermediate 
Environment Model

Translator

Environment Model 
Specifications Program Fragment

Scenario Model Builders



Provide Requirement 
Specifications
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Requirement Specification
int cnt = 0;

int try_module_get(struct module * m) {
ret = ldv_random_neg_int();
if (!ret)

cnt++;
return ret;

}

void module_put(struct module * m) {
cnt--;

}

void ldv_check_final_state(void) {
ldv_assert(cnt==0);

}
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Requirement Specifications Development

1. Support an empty requirement to measure the coverage
2. Support memory safety and data race safety requirement 

specifications
3. Implement other requirement specifications
4. Develop tests for requirement models
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Analyse Results
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Verification Results

• Error traces (witnesses)
• Coverage reports
• Logs
• Resource consumption statistics
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Use cases
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Development
• Uncovered entry points
• Complicated code
• Classify fails

Refinement
• Marks and tags for errors and false positives
• Regression tests

Verification
• Find bugs
• Prepare final marks and tags



Evaluation
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Manual Effort at Verification of Linux Device Drivers and 
Subsystems

Stage Serial device 
drivers (20KLOC)

All device 
drivers(4MLOC)

Subsystems
(1MLOC) Total

Development of 
decomposition 
algorithms

0,25 man-months

(100 LOC Python)

- 0,25 man-months

(100 LOC Python)

0,5 man-months

(200 LOC Python)

Development of 
environment model 
builders

3 man-months

(3 KLOC Python)

- 0,5 man-months

(500 LOC Python)

3,5 man-months

(3,5 KLOC Python)

Development of 
environment model 
specifications

4,5 man-months

(7 KLOC DSL)

5,5 man-months 

(10 KLOC DSL)

- 10 man-months

(17 KLOC DSL)

Development of 
requirement 
specifications

6 man-months

(550 LOC DSL)

9 man-months

(950 LOC DSL)

0,25 man-months 

(200 LOC DSL)

15,25 man-months

(1500 LOC DSL)

Total 13,75 man-
months

14,5 man-months 1 man-month 29,25 man-months
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BusyBox Applets Verification
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Stage Efforts
Development of 
decomposition 
algorithms

0,25 man-months
(100 LOC Python)

Development of 
environment model 
builders

0 man-months
-

Development of 
environment model 
specifications

0,25 man-months (200 LOC DSL)

Development of 
requirement 
specifications

0,5 man-months
(300 LOC DSL)

Total 1 man-month



Why do you care

• Another point of view
• Train your verification tool
• Get new verification tasks
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Thank You!
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https://github.com/ldv-klever/klever - Mirror
https://forge.ispras.ru/projects/klever - Issue tracker
https://github.com/17451k/cif - CIF
https://github.com/17451k/clade - Clade
http://linuxtesting.org/kernel - Other links and 
verification projects

https://github.com/ldv-klever/klever
https://forge.ispras.ru/projects/klever
https://github.com/17451k/cif
https://github.com/17451k/clade
http://linuxtesting.org/kernel


Build Base

• Various information about the program
• Source code
• Build command graph
• File dependencies graph
• Callgraph
• …

• Easy to access
• Movable archive with all sources and data
• Python API to access the data
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Summary

Decomposition Environment 
Modeling

Requirement 
Specifications 
Development

Analyzing results

Development

Manually prepared 
decomposition 
specification

Coarse model 
without restrictions

Empty requirement Code coverage

Decomposition 
algorithms

Scenario model 
builders

Requirement 
specifications, 
common model

Code coverage, 
marks, tags

Refinement

Algorithms to verify 
libraries

Environment model 
specifications, tests

Requirement 
specifications, 
common model,  
tests

Code coverage, 
marks, tags

Verification - - Common model Code coverage, 
marks, tags
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Verification Time

Verification Job 2 physical cores 4 physical cores 30 * 4 physical cores

Serial device drivers (30KLOC) 5h 2.7h 0.5h
All device drivers (3MLOC) 600h 195h 11h
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