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Value Analysis by Example



Value Analysis by Example



Value Analysis by the Numbers

• Well over 4000 verification 
tasks from SV-COMP’16

• VA solves almost two thirds

• Under SV-COMP’16 rules, 
complete evaluation takes 
440 hours

• 410 hours, or 93%, are 
wasted for unsolved 
verification tasks

State-space explosion is prime reason for extreme resource consumption



State-Space Explosion



Counterexample-Guided 
Abstraction Refinement

build & check
abstract model

refine
precision

UNSAFE
SAFE

error path is infeasible

program
source
code

is feasible ?

no error path 

error pathfound

precision is analysis dependent:
• e.g., set of predicates

for a predicate analysis
• e.g., set of variable

identifiers for a value analysis



Counterexample-Guided 
Abstraction Refinement

build & check
abstract model

refine
precision

UNSAFE
SAFE

error path is infeasible

program
source
code

is feasible ?

no error path 

error pathfound

interpolate infeasible error path to,
• e.g., obtain set of predicates

for a predicate analysis
• e.g., obtain set of variable 

identifiers for a value analysis



[Abstractions from Proofs, 2004, Henzinger, Jhala, Majumdar, McMillan]
Craig Interpolation

φ−

itp
ψ
the interpolant

φ+

At L12 the interpolant ψ
for φ− and φ+ could be:

[flag = 0], or [flag ≤ 0], or ...



For a pair of constraint sequences γ− and γ+,
such that γ−  ∧ γ+ is contradicting,
an interpolant ψ is a constraint sequence
that fulfills the following requirements:

  1) γ− implies ψ
  2) ψ  ∧ γ+ is unsatisfiable
  3) ψ only contains symbols that
      are common to both γ− and γ+

Value Interpolation
[Explicit-State Software Model Checking Based on CEGAR and Interpolation, 2013, Beyer, Löwe]

A L12 the interpolant ψ
for φ− and φ+ can only be:
[flag = 0]

γ−

γ+



Comparison to Plain Value Analysis

• Significant improvements in 
DeviceDrivers64Linux

• Significant regressions in 
ECA and ProductLines

• In total solves around 500 
verification task less

High number of refinements is prime reason for overall regression



Inspecting Number of Refinements

At least three clusters 
distinguishable

• Solved by both
#refinements < 200

• Solved only by VA-Cegar
#refinements < 500

• Solved only by VA-Plain
#refinements > 1000



Reducing Time for Refinements

• Optimized Interpolation

• Deepest Infeasible Suffix
• Interpolant-Equality

• Optimized Refinement

• “Scoped” Precision
• Eager Restart

➢ CEGAR pays off, solving 
well over 400 tasks more

➢Lazy abstraction is not well-suited for the Value Analysis



Level of Non-Determinism

Low level of non-determinism:
Use Plain Value Analysis

High level of non-determinism:
Use Value Analysis with CEGAR

➢Valid indicator whether to perform abstraction or not



• Applicable to other analyses

• Octagon analysis

• Symbolic execution analysis

• Enables regression verification

• Parallel composition with Predicate Analysis

➢Availablilty of several effective analyses based on CEGAR

➢Next: Techniques that may benefit all such analyses

Versatility of Value Interpolation



Infeasible Sliced Prefixes
and Refinement Selection



Extraction of Infeasible Sliced Prefixes
[Sliced Path Prefixes: An Effective Method to Enable Refinement Selection, 2015, Beyer, Löwe, Wendler]



Any infeasible sliced prefix φ,

that is extracted from an infeasible error path σ,

can be used for interpolation

to exclude the original error path σ

from subsequent iterations of CEGAR loop.

Main Message

➢We can use any prefix we want for interpolation !



Sliced Prefixes - Further Applications

• Enables guided refinement selection

• Improves effectiveness and efficiency of static refinement

• Speeds up Value Interpolation significantly

• Impressive results in combination with symbolic execution

• Better control for global refinement

• All target states at once

• Each target state with an unique refinement

• Infeasible Sliced Prefixes for ABE?



Infeasible Sliced Prefixes for ABE?

• ABE: block size can have any size

• ABE-encoded path represent different paths

• Simply pick one? No!

• Simply pick all? No!

➢Just think in blocks

• SBE-encoded paths also are made of blocks

• SBE: each block contains a single statement

➢For ABE: apply same approach as for SBE / Value Analysis



Infeasible Sliced Prefixes for ABE



Elimination of Infeasible Sliced Prefixes !

Verification task const_true­unreach­call1.c from
the official SVCOMP’16 repository, and a possible infeasible

error path when analyzing the task with ABE-lf



Verification task const_true­unreach­call1.c from
the official SVCOMP’16 repository, and a possible infeasible

error path when analyzing the task with ABE-lf

Ψ: [y = 2]

Elimination of Infeasible Sliced Prefixes !



➢For ABE: this approach is also not perfect
➢Any other ideas?

Elimination of Infeasible Sliced Prefixes !



Quite good for LDV



Questions ?
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