
Effective Approaches

to Abstraction Refinement

for an Explicit Value Analysis

Stefan Löwe

SoSy-Lab
Software Systems

Outline of my Thesis

Outline of my Talk

Value Analysis by Example

Value Analysis by Example

Value Analysis by the Numbers

• Well over 4000 verification
tasks from SV-COMP’16

• VA solves almost two thirds

• Under SV-COMP’16 rules,
complete evaluation takes
440 hours

• 410 hours, or 93%, are
wasted for unsolved
verification tasks

State-space explosion is prime reason for extreme resource consumption

State-Space Explosion

Counterexample-Guided
Abstraction Refinement

build & check
abstract model

refine
precision

UNSAFE
SAFE

error path is infeasible

program
source
code

is feasible ?

no error path

error pathfound

precision is analysis dependent:
• e.g., set of predicates

for a predicate analysis
• e.g., set of variable

identifiers for a value analysis

Counterexample-Guided
Abstraction Refinement

build & check
abstract model

refine
precision

UNSAFE
SAFE

error path is infeasible

program
source
code

is feasible ?

no error path

error pathfound

interpolate infeasible error path to,
• e.g., obtain set of predicates

for a predicate analysis
• e.g., obtain set of variable

identifiers for a value analysis

[Abstractions from Proofs, 2004, Henzinger, Jhala, Majumdar, McMillan]
Craig Interpolation

φ−

itp
ψ
the interpolant

φ+

At L12 the interpolant ψ
for φ− and φ+ could be:

[flag = 0], or [flag ≤ 0], or ...

For a pair of constraint sequences γ− and γ+,
such that γ− ∧ γ+ is contradicting,
an interpolant ψ is a constraint sequence
that fulfills the following requirements:

 1) γ− implies ψ
 2) ψ ∧ γ+ is unsatisfiable
 3) ψ only contains symbols that
 are common to both γ− and γ+

Value Interpolation
[Explicit-State Software Model Checking Based on CEGAR and Interpolation, 2013, Beyer, Löwe]

A L12 the interpolant ψ
for φ− and φ+ can only be:
[flag = 0]

γ−

γ+

Comparison to Plain Value Analysis

• Significant improvements in
DeviceDrivers64Linux

• Significant regressions in
ECA and ProductLines

• In total solves around 500
verification task less

High number of refinements is prime reason for overall regression

Inspecting Number of Refinements

At least three clusters
distinguishable

• Solved by both
#refinements < 200

• Solved only by VA-Cegar
#refinements < 500

• Solved only by VA-Plain
#refinements > 1000

Reducing Time for Refinements

• Optimized Interpolation

• Deepest Infeasible Suffix
• Interpolant-Equality

• Optimized Refinement

• “Scoped” Precision
• Eager Restart

➢ CEGAR pays off, solving
well over 400 tasks more

➢Lazy abstraction is not well-suited for the Value Analysis

Level of Non-Determinism

Low level of non-determinism:
Use Plain Value Analysis

High level of non-determinism:
Use Value Analysis with CEGAR

➢Valid indicator whether to perform abstraction or not

• Applicable to other analyses

• Octagon analysis

• Symbolic execution analysis

• Enables regression verification

• Parallel composition with Predicate Analysis

➢Availablilty of several effective analyses based on CEGAR

➢Next: Techniques that may benefit all such analyses

Versatility of Value Interpolation

Infeasible Sliced Prefixes
and Refinement Selection

Extraction of Infeasible Sliced Prefixes
[Sliced Path Prefixes: An Effective Method to Enable Refinement Selection, 2015, Beyer, Löwe, Wendler]

Any infeasible sliced prefix φ,

that is extracted from an infeasible error path σ,

can be used for interpolation

to exclude the original error path σ

from subsequent iterations of CEGAR loop.

Main Message

➢We can use any prefix we want for interpolation !

Sliced Prefixes - Further Applications

• Enables guided refinement selection

• Improves effectiveness and efficiency of static refinement

• Speeds up Value Interpolation significantly

• Impressive results in combination with symbolic execution

• Better control for global refinement

• All target states at once

• Each target state with an unique refinement

• Infeasible Sliced Prefixes for ABE?

Infeasible Sliced Prefixes for ABE?

• ABE: block size can have any size

• ABE-encoded path represent different paths

• Simply pick one? No!

• Simply pick all? No!

➢Just think in blocks

• SBE-encoded paths also are made of blocks

• SBE: each block contains a single statement

➢For ABE: apply same approach as for SBE / Value Analysis

Infeasible Sliced Prefixes for ABE

Elimination of Infeasible Sliced Prefixes !

Verification task const_true­unreach­call1.c from
the official SVCOMP’16 repository, and a possible infeasible

error path when analyzing the task with ABE-lf

Verification task const_true­unreach­call1.c from
the official SVCOMP’16 repository, and a possible infeasible

error path when analyzing the task with ABE-lf

Ψ: [y = 2]

Elimination of Infeasible Sliced Prefixes !

➢For ABE: this approach is also not perfect
➢Any other ideas?

Elimination of Infeasible Sliced Prefixes !

Quite good for LDV

Questions ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

