
Benchmarking and

Resource Measurement

 Dirk Beyer Stefan Löwe Philipp Wendler

SoSy-Lab
Software Systems

2

Benchmarking is Important

● Evaluation of new approaches
● Evaluation of tools
● Competitions
● Tool development (testing, optimizations)

Reliable, reproducible, and accurate results
needed!

Reliable, reproducible, and accurate results
needed!

3

Benchmarking is Hard

● Influence of I/O
● Networking
● Distributed tools
● User input

● Different hardware
architectures

● Heterogeneity of tools
● Parallel benchmarks

Relevant!Not relevant for
most verification tools

4

Goals

● Reproducibility
– Avoid non-deterministic effects and interferences

– Provide defined set of resources

● Accurate results
● For verification tools (and similar)
● On Linux

5

Checklist

1. Measure and Limit Resources Accurately
– Time

– Memory

2. Terminate Processes Reliably

3. Assign Cores Deliberately

4. Respect Non-Uniform Memory Access

5. Avoid Swapping

6. Isolate Individual Runs
– Communication

– File system

6

Measuring CPU time with „time“

S
ub

pr
oc

es
s

2

S
ub

pr
oc

es
s

1

S
ub

pr
oc

es
s

n

V
er

ifi
er

~$ time verifier

real Xs
user Ys
sys Zs

CPU time may not be included
in measurement

7

CPU

core

memory region

8

Isolate Individual Runs

● Excerpt of start script taken from some verifier
in SV-COMP:

… (tool started here)

killall z3 2> /dev/null
killall minisat 2> /dev/null
killall yices 2> /dev/null

● Thanks for thinking of cleanup
● But what if there are parallel runs?

9

Isolate Individual Runs

● Temp files with constant names like
/tmp/mytool.tmp collide

● State stored in places like ~/.mytool
hinders reproducibility
– Sometimes even auto-generated

● Restrict changes to file system
as far as possible

10

Cgroups

● Linux kernel „control groups“
● Reliable tracking of spawned processes
● Resource limits and measurements per cgroup

– CPU time

– Memory

– I/O etc.

Only solution on Linux
for race-free handling of multiple processes!

Only solution on Linux
for race-free handling of multiple processes!

11

Cgroups

● Hierarchical tree of sets of processes

/

/user1

/benchmarks

/benchmarks/run1
1130 (verifier)
1131 (subprocess1)
...

...

5542 (bash)
5544 (firefox)
...

...

12

Namespaces

● Light-weight virtualization
● Only one kernel running, no additional layers
● Change how processes see the system
● Identifiers like PIDs, paths, etc. can have different

meanings in each namespace
– PID 42 can be a different process in each namespace

– Directory / can be a different directory in each namespace

– …

● Can be used to build application containers
without possibility to escape

● Usable without root access

13

Benchmarking Containers

● Encapsulate groups of processes
● Limited resources (memory, cores)
● Total resource consumption measurable
● All other processes hidden and

no communication with them
● Disabled network access
● Adjusted file-system layout

– Private /tmp

– Writes redirected to temporary storage

14

BenchExec

● A Framework for Reliable Benchmarking
and Resource Measurement

● Provides benchmarking containers
based on cgroups and namespaces

● Allocates hardware resources appropriately
● Low system requirements

(modern Linux kernel and cgroups access)

15

BenchExec

● Open source: Apache 2.0 License
● Written in Python 3
● https://github.com/sosy-lab/benchexec

● Used in International Competition
on Software Verification (SV-COMP)

● Originally developed for software verification,
but applicable to arbitrary tools

https://github.com/sosy-lab/benchexec

16

BenchExec Architecture

● runexec

– Benchmarks a single run of a tool

– Implements benchmarking container

– Easy integration into other frameworks

● benchexec

– Benchmarks multiple runs
(e.g., a set of configurations against a set of files)

– Allocates hardware resources

– Can check whether tool result is as expected

● table-generator

– Generates CSV and interactive HTML tables (with plots)

– Computes result differences and regression counts

17

BenchExec Configuration

● Tool command line
● Expected result
● Resource limits

– CPU time, wall time

– Memory

● Container setup
– Network access

– File-system layout

● Where to put result files

18

Conclusion

BenchExec
https://github.com/sosy-lab/benchexec

BenchExec
https://github.com/sosy-lab/benchexec

Be careful when benchmarking!Be careful when benchmarking!

Don't use time, ulimit etc.
Always use cgroups and namespaces!

https://github.com/sosy-lab/benchexec
https://github.com/sosy-lab/benchexec

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18

