
A Light-Weight Approach for Verifying
Multi-Threaded Programs with CPAchecker

ThreadingCPA

Dirk Beyer1 Karlheinz Friedberger2

1LMU Munich, Germany

2University of Passau, Germany

Dirk Beyer, Karlheinz Friedberger ThreadingCPA

Multi-Threaded Programs on the Rise
Why do we need multi-threaded programs? Where do we use them?

Multi-threaded programs appear everywhere!
several threads per CPU core
multi-core CPUs
Linux kernel, device drivers
internet, web and cloud services, IoT
...
SV-Comp: special category for concurrent programs

Dirk Beyer, Karlheinz Friedberger ThreadingCPA

Verifying Multi-Threaded Programs
A Very Old Problem

Several approaches available:
direct analysis of all thread interleavings
program sequentialization
formula-based encoding of threads

Combined with some optimization:
partial order reduction (ample sets, ...)
iteration order for state-space exploration
bounded model checking (bounded number of threads, ...)

Dirk Beyer, Karlheinz Friedberger ThreadingCPA

Verifying Multi-Threaded Programs
A Very Old Problem

Several approaches available:
direct analysis of all thread interleavings
program sequentialization
formula-based encoding of threads

Combined with some optimization:
partial order reduction (ample sets, ...)
iteration order for state-space exploration
bounded model checking (bounded number of threads, ...)

Dirk Beyer, Karlheinz Friedberger ThreadingCPA

Multi-Threaded Programs and CPAchecker
What can CPAchecker do?

Several approaches already available in CPAchecker:
(all of them are based on the pthreads library)

formula-based encoding with predicate analysis
→ very old orphaned branch
sequentialization of the CFA
→ student’s thesis, needs some work
ThreadingCPA: handles program locations for multiple threads
→ replaces LocationCPA
→ everything else should work out-of-the-box (really?)

Dirk Beyer, Karlheinz Friedberger ThreadingCPA

Basics
What every developer of CPAchecker already knows

CFA control flow automaton with location nodes (program
counter) and edges (statements and assumptions),
one CFA per function,
all function connected into super-graph of program

CPA abstract domain: how does an abstract state look alike?
transfer relation: how to handle a single edge?
merge and stop operator: how are abstract states related?

Dirk Beyer, Karlheinz Friedberger ThreadingCPA

Basics
What every developer of CPAchecker already knows

CFA control flow automaton with location nodes (program
counter) and edges (statements and assumptions),
one CFA per function,
all function connected into super-graph of program

CPA abstract domain: how does an abstract state look alike?
transfer relation: how to handle a single edge?
merge and stop operator: how are abstract states related?

Dirk Beyer, Karlheinz Friedberger ThreadingCPA

ThreadingCPA
... just another CPA

LocationCPA: one program location per abstract state

Basic idea: track many instead of one program locations

abstract state: {t1 7→ l t1 , t2 7→ l t2 , ...}
transfer relation: s g

 s ′ depends on the edge g :
1 pthread_create: add a new location for the new thread
2 pthread_join: remove the exit location of the joined thread
3 otherwise: just analyze the edge (like LocationCPA, with

additional handling of pthread locks)
merge and stop operator: based on equality of abstract states
(mergesep and stopsep)

→ can be combined with other CPAs

Dirk Beyer, Karlheinz Friedberger ThreadingCPA

ThreadingCPA
... just another CPA

LocationCPA: one program location per abstract state

Basic idea: track many instead of one program locations

abstract state: {t1 7→ l t1 , t2 7→ l t2 , ...}
transfer relation: s g

 s ′ depends on the edge g :
1 pthread_create: add a new location for the new thread
2 pthread_join: remove the exit location of the joined thread
3 otherwise: just analyze the edge (like LocationCPA, with

additional handling of pthread locks)
merge and stop operator: based on equality of abstract states
(mergesep and stopsep)

→ can be combined with other CPAs

Dirk Beyer, Karlheinz Friedberger ThreadingCPA

ThreadingCPA
... just another CPA

LocationCPA: one program location per abstract state

Basic idea: track many instead of one program locations

abstract state: {t1 7→ l t1 , t2 7→ l t2 , ...}
transfer relation: s g

 s ′ depends on the edge g :
1 pthread_create: add a new location for the new thread
2 pthread_join: remove the exit location of the joined thread
3 otherwise: just analyze the edge (like LocationCPA, with

additional handling of pthread locks)
merge and stop operator: based on equality of abstract states
(mergesep and stopsep)

→ can be combined with other CPAs
Dirk Beyer, Karlheinz Friedberger ThreadingCPA

Example
Program with CFA

0

1

2

3

4

5

6

7

pthread_t id1, id2;

int i=1; j=1

pthread_create(&id1, 0, t1, 0);

pthread_create(&id2, 0, t2, 0);

pthread_join(&id1, 0);

pthread_join(&id2, 0);

assert(j<=8);

A

B

C

i+=j;

i+=j;

X

Y

Z

j+=i;

j+=i;

main

t1 t2

pthread_t id1 , i d2 ;
i n t i =1, j =1;

void main () {
p th r e ad_c r ea t e (& id1 , 0 , t1 , 0) ;
p th r e ad_c r ea t e (& id2 , 0 , t2 , 0) ;

p t h r e ad_ j o i n (id1 , 0) ;
p t h r e ad_ j o i n (id2 , 0) ;

a s s e r t (j <= 8) ;
}

void t1 () {
i+=j ;
i+=j ;

}

void t2 () {
j+=i ;
j+=i ;

}

Dirk Beyer, Karlheinz Friedberger ThreadingCPA

Example
CFA and ARG

0

1

2

3

4

5

6

7

pthread_t id1, id2;

int i=1; j=1

pthread_create(&id1, 0, t1, 0);

pthread_create(&id2, 0, t2, 0);

pthread_join(&id1, 0);

pthread_join(&id2, 0);

assert(j<=8);

A

B

C

i+=j;

i+=j;

X

Y

Z

j+=i;

j+=i;

main

t1 t2

main 7→0

main 7→1

main 7→2

main 7→3
id17→A

main 7→3
id17→B main 7→4

id17→A
id27→X

main 7→3
id17→C main 7→4

id17→B
id27→X

main 7→4
id17→A
id27→Ymain 7→4

id17→C
id27→X

main 7→4
id17→B
id27→Y

main 7→4
id17→A
id27→Z

main 7→5
id27→X

main 7→4
id17→C
id27→Y

main 7→4
id17→B
id27→Z

main 7→5
id27→Y

main 7→4
id17→C
id27→Z

main 7→5
id27→Z

main 7→6

main 7→7Dirk Beyer, Karlheinz Friedberger ThreadingCPA

Verifying Multi-Threaded Programs with CPAchecker
Is the ThreadingCPA compatible with (all) other CPAs? Partially!

We have to handle several call stacks, one per thread
→ integrate CallstackCPA into ThreadingCPA

ValueCPA, BDDCPA, IntervalCPA:
→ track assignments, identify variables as f ::x
→ problem: same function called in several threads?
→ solution: avoid colliding function names by cloning each
function before the analysis

Other CPAs and algorithms: TODO
→ some small changes required (several locations per state)
→ PredicateCPA: block operator matches thread interleavings?
→ more advanced thread management

Dirk Beyer, Karlheinz Friedberger ThreadingCPA

Verifying Multi-Threaded Programs with CPAchecker
Is the ThreadingCPA compatible with (all) other CPAs? Partially!

We have to handle several call stacks, one per thread
→ integrate CallstackCPA into ThreadingCPA

ValueCPA, BDDCPA, IntervalCPA:
→ track assignments, identify variables as f ::x
→ problem: same function called in several threads?
→ solution: avoid colliding function names by cloning each
function before the analysis

Other CPAs and algorithms: TODO
→ some small changes required (several locations per state)
→ PredicateCPA: block operator matches thread interleavings?
→ more advanced thread management

Dirk Beyer, Karlheinz Friedberger ThreadingCPA

Verifying Multi-Threaded Programs with CPAchecker
Is the ThreadingCPA compatible with (all) other CPAs? Partially!

We have to handle several call stacks, one per thread
→ integrate CallstackCPA into ThreadingCPA

ValueCPA, BDDCPA, IntervalCPA:
→ track assignments, identify variables as f ::x
→ problem: same function called in several threads?
→ solution: avoid colliding function names by cloning each
function before the analysis

Other CPAs and algorithms: TODO
→ some small changes required (several locations per state)
→ PredicateCPA: block operator matches thread interleavings?
→ more advanced thread management

Dirk Beyer, Karlheinz Friedberger ThreadingCPA

Optimization for the ThreadingCPA
Is this simple approach efficient? Not yet!

We need optimization!
partial order reduction
→ implemented in ThreadingCPA
bound number of threads
→ implemented in ThreadingCPA
iteration order
→ implemented as waitlist order, like BFS and DFS
partitioning abstract states based on program location
→ inherit from Partitionable and use PartitionedReachedSet
equality for call stack states with different object identities
! CPAchecker does not use equality for call stacks by default !

Dirk Beyer, Karlheinz Friedberger ThreadingCPA

Evaluation on the Category "Concurrency", SV-Comp’16
Value Analysis with Optimization Steps

0 200 400 600 800 1,0001

10

100

1,000

n-th fastest result

CP
U

tim
e
(s
)

plain value analysis
+ partitioning
+ waitlist order
+ POR (opt. VA)

Dirk Beyer, Karlheinz Friedberger ThreadingCPA

Evaluation on the Category "Concurrency", SV-Comp’16
Different analyses in CPAchecker

0 200 400 600 800 1,0001

10

100

1,000

n-th fastest result

CP
U

tim
e
(s
)

BDD analysis
interval analysis
opt. VA

Dirk Beyer, Karlheinz Friedberger ThreadingCPA

Evaluation on the Category "Concurrency", SV-Comp’16
Comparison of CPAchecker with other tools

0 200 400 600 800 1,0001

10

100

1,000

n-th fastest result

CP
U

tim
e
(s
)

CBMC
VVT
opt. VA

Dirk Beyer, Karlheinz Friedberger ThreadingCPA

Further Possibilites
CPAchecker is very flexible

Validation Witnesses:
export counterexamples in Graphml
extension of the format: include identifiers for threads

Deadlock detection:
for the user: just change the specification
detail: the strengthening operator allows to inform the
AutomatonCPA about deadlock found by the ThreadingCPA

Dirk Beyer, Karlheinz Friedberger ThreadingCPA

Further Possibilites
CPAchecker is very flexible

Validation Witnesses:
export counterexamples in Graphml
extension of the format: include identifiers for threads

Deadlock detection:
for the user: just change the specification
detail: the strengthening operator allows to inform the
AutomatonCPA about deadlock found by the ThreadingCPA

Dirk Beyer, Karlheinz Friedberger ThreadingCPA

Dining Philosophers Problem
Questions before Dinner?

�: Plato, Konfuzius, Socrates, Voltaire and Descartes

Dirk Beyer, Karlheinz Friedberger ThreadingCPA

