

Lazy Heap Analysis with Symbolic
Memory Graphs

Alexander Driemeyer

Outline
1. Motivation

2. CPAchecker and Symbolic Memory Graphs

3. Abstractions of Symbolic Memory Graphs

4. Using counterexample guided abstraction refinement
with Symbolic Memory Graphs

5. Challenges and conclusion

Motivation

● Use symbolic memory graphs to verify programs
with complex heap structures

● Use abstraction to be able to check all possible
states of a program for the specified safety
property

● Use abstraction refinement to find a level of
abstraction that is as coarse as possible while
still fine enough to eliminate all spurious safety
property violation

Outline
1. Motivation

2. CPAchecker and Symbolic Memory Graphs

3. Abstractions of Symbolic Memory Graphs

4. Using counterexample guided abstraction refinement
with Symbolic Memory Graphs

5. Challenges and conclusion

CPAchecker

CFA ARG
program +
specification

 CPAchecker

1 int main() {
2
3 int a = nondet_int();
5
6 if(a == 5) {
7 a = 7;
8 } else {
9 a = 6;
10 }
11 }

5 @ N2
main

[]

6 @ N3
main

[]

Line 9: int a;

7 @ N4
main

[]

Line 9: a = __VERIFIER_nondet_int();

9 @ N7
main

[]

Line 11: [!(a == 5)]

8 @ N6
main

[main::a=5]

Line 11: [a == 5]

10 @ N9
main

[main::a=6]

Line 14: a = 6;

11 @ N5
main

[main::a=6]

Line 14:

12 @ N0
main exit

[main::a=6]

Line 15: default return

13 @ N8
main

[main::a=7]

Line 12: a = 7;

14 @ N5
main

[main::a=7]

Line 15:

15 @ N0
main exit

[main::a=7]

Line 15: default return

2

3

7 6

9 8

5

0

4

int a;

a = nondet();

[a == 5][a != 5]

a = 7;a = 6;

default return;

Symbolic Memory Graph (SMG)

● Represents sets of heap graphs of a program
at a program location

● Supports read and write operations, join of
smgs, checking values for equality and
inequality, and list abstraction

● Detects memory leaks and invalid read, write or
 free operations

Outline
1. Motivation

2. CPAchecker and Symbolic Memory Graphs

3. Abstractions of Symbolic Memory Graphs

4. Using counterexample guided abstraction refinement
with Symbolic Memory Graphs

5. Challenges and conclusion

List Abstraction

● Used to handle infinitely recursive list segments
● Heap objects are abstracted to list segments

and the sub-graphs of the heap objects are
joined together

● Whether to execute a possible list abstraction
depends on the number of heap objects that
can be abstracted into a list, and the loss of
information when joining their sub graphs

SMG Precision

● Determines the level of abstraction of a program
verification with symbolic memory graphs

● Consist of sets of memory locations, memory
paths and locks for list abstractions for every
program location

● Adjusts symbolic memory graphs of abstract
states in the ARG after each calculation of new
abstract states for the ARG

Outline
1. Motivation

2. CPAchecker and Symbolic Memory Graphs

3. Abstractions of Symbolic Memory Graphs

4. Using counterexample guided abstraction
refinement with Symbolic Memory Graphs

5. Challenges and conclusion

Counterexample guided abstraction
refinement

● Method to obtain a good level of abstraction for
an analysis for a program

● 1 Step Abstraction : Construct an abstract model
of the program

● 2 Step Verification: Check if the model violates a
chosen safety property

● 3 Step Refinement: Refine the level of abstraction
based on a found spurious counterexample

CEGAR with Symbolic Memory
Graphs

● Use SMG precision to determine the level of
abstraction for Step 1

● Use the full SMG precision on a path to check if
a found counterexample is feasible for Step 2

● Use the flow dependence of the SMGs of the
spurious counterexample to calculate the new
SMG precision for step 3

Lazy Abstraction

● Used to improve performance of
Counterexample guided abstraction refinement

● Instead of continuously recalculating the
abstract model after each refinement step,
calculate the model and the refinement of the
model on the fly

Lazy Abstraction

Example

Outline
1. Motivation

2. CPAchecker and Symbolic Memory Graphs

3. Abstractions of Symbolic Memory Graphs

4. Using counterexample guided abstraction refinement
with Symbolic Memory Graphs

5. Challenges and conclusion

Challenges And Conclusion

● Finding a better refinement method for list
abstractions

● A method to reduce the loss of information
when writing to program location that is not
known at the current level of abstraction

● Heap abstraction for trees and other data
structures

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24

